

This requirement would apply to anything else you use or install (like if you install tensorflow binaries, for example). When you compile CUDA codes, you will have to make sure that all codes (and libraries) are compiled with PTX so they can JIT-compile to cc7.5 _impl.InternalError: Blas SGEMM launch failed : m=86528, n=32, k=64 16:40:35.133313: E tensorflow/stream_executor/cuda/cuda_:652] failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILEDįile "D:/keras-yolo3/train.py", line 217, in įile "D:/keras-yolo3/train.py", line 84, in _mainįile "D:\anaconda\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapperįile "D:\anaconda\lib\site-packages\keras\engine\training.py", line 1418, in fit_generatorįile "D:\anaconda\lib\site-packages\keras\engine\training_generator.py", line 217, in fit_generatorįile "D:\anaconda\lib\site-packages\keras\engine\training.py", line 1217, in train_on_batchįile "D:\anaconda\lib\site-packages\keras\backend\tensorflow_backend.py", line 2715, in _call_įile "D:\anaconda\lib\site-packages\keras\backend\tensorflow_backend.py", line 2675, in _callįile "D:\anaconda\lib\site-packages\tensorflow\python\client\session.py", line 1399, in _call_įile "D:\anaconda\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 526, in _exit_ Train on 468 samples, val on 51 samples, with batch size 2. 16:40:22.279544: I tensorflow/core/common_runtime/gpu/gpu_:1103] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6270 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080, pci bus id: 0000:01:00.0, compute capability: 7.5)Ĭreate YOLOv3 model with 9 anchors and 13 classes.ĭ:\anaconda\lib\site-packages\keras\engine\saving.py:1140: UserWarning: Skipping loading of weights for layer conv2d_59 due to mismatch in shape ((1, 1, 1024, 54) vs (255, 1024, 1, 1)).ĭ:\anaconda\lib\site-packages\keras\engine\saving.py:1140: UserWarning: Skipping loading of weights for layer conv2d_59 due to mismatch in shape ((54,) vs (255,)).ĭ:\anaconda\lib\site-packages\keras\engine\saving.py:1140: UserWarning: Skipping loading of weights for layer conv2d_67 due to mismatch in shape ((1, 1, 512, 54) vs (255, 512, 1, 1)).ĭ:\anaconda\lib\site-packages\keras\engine\saving.py:1140: UserWarning: Skipping loading of weights for layer conv2d_67 due to mismatch in shape ((54,) vs (255,)).ĭ:\anaconda\lib\site-packages\keras\engine\saving.py:1140: UserWarning: Skipping loading of weights for layer conv2d_75 due to mismatch in shape ((1, 1, 256, 54) vs (255, 256, 1, 1)).ĭ:\anaconda\lib\site-packages\keras\engine\saving.py:1140: UserWarning: Skipping loading of weights for layer conv2d_75 due to mismatch in shape ((54,) vs (255,)).įreeze the first 249 layers of total 252 layers. 16:40:22.278990: I tensorflow/core/common_runtime/gpu/gpu_:971] Device interconnect StreamExecutor with strength 1 edge matrix: Name: GeForce RTX 2080 major: 7 minor: 5 memor圜lockRate(GHz): 1.8 16:40:21.443178: I tensorflow/core/common_runtime/gpu/gpu_:1411] Found device 0 with properties: 16:40:21.107744: I tensorflow/core/platform/cpu_feature_:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

_conv import register_converters as _register_converters In future, it will be treated as `np.float64 = np.dtype(float).type`.įrom. D:\anaconda\python.exe D:/keras-yolo3/train.pyĭ:\anaconda\lib\site-packages\h5py\_init_.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated.
